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Previously on FDS
• Assembler directives

• li and la pseudoinstructions

• Do-while and if-then-else
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Let's Talk About
• CPU Performance

• Processor Implementations
• Single-cycle CPU
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Learning Outcomes

▪Reason about CPU performance and the factors affecting it

▪Discover single-cycle CPU implementation
• Pros and cons of single-cycle and multicycle implementations

▪Draw a CPU block diagram
• Datapath + control

▪ List and explain instruction execution steps
• The hardware components and control signals involved

CS-173, © EPFL, Spring 2025



5

Quick Outline

▪CPU performance

▪CPU time: Example

▪ Instruction performance: Example

▪CPI: Example

▪Classic CPU performance equation

▪ Performance and power: Example

▪ Single-cycle CPU
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CPU Performance
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Time

▪ Time is the measure of computer performance
• A computer that performs the same work in the least amount of time

is the fastest and thus, most performant

▪CPU execution time is measured in seconds per program
• Program-specific

▪Definition of time
• Wall clock time  response time  elapsed time

• Includes overheads (for tasks other than running our program)
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CPU Performance

▪CPU execution time or, simply, CPU time
• The time the CPU spends on our program

• Ignores overheads, such as the time to read/write to input/output 
devices (e.g., keyboard, screen, printer), and performing unrelated 
system tasks

▪We measure time in discrete time intervals: clock cycles
• Synonyms: CPU cycles, ticks, clock ticks, clock periods, clocks, cycles
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▪ A formula that relates basic metrics to CPU execution time

▪Alternatively, as clock rate (i.e., frequency) and cycle are inverses
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CPU Performance and Its Factors
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CPU Time

Q: Consider CPU A, running on a 2 GHz clock. The CPU time to run our program 
is 10 s. How many CPU cycles does this CPU take to run the program?

A:  Recall:

Therefore, 

Finally, CPU A takes 20 ×109 cycles to run our program.
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Improving Performance

▪ Let us help a designer build CPU B, which will run the same program in 6 s.

▪ The computer designer realized that a substantial increase in clock rate is 
possible. Still, this increase will affect the rest of the CPU, causing CPU B to 
require 1.2 × the cycles that CPU A takes to run this program.

▪ Q: What clock rate should the designer of CPU B target?

▪ A:

Therefore, the clock rate of CPU B is 4 GHz (double the clock rate of CPU A). 
CS-173, © EPFL, Spring 2025

CPU timeB

1.2 × CPU cyclesA

Clock rateB
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Clock rateB
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Instruction Performance
Clock Cycles Per Instruction (CPI)

▪ So far, we have not included any reference to the number of 
instructions needed for the program. However, CPU time 
depends on the number of instructions in a program

▪Average clock cycles per instruction (CPI) is the average of
all the instructions executed by the program
• Depending on what they do, instructions may take different times
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Comparing Code Segments

▪Consider three instruction classes, K1, K2, and K3, with CPIs of 1, 
2, and 3 cycles per instruction, respectively.

▪ For a particular high-level code segment, the compiler writer is 
considering two code sequences requiring the following 
instruction counts:
• SeqA: 2 instructions from K1, 1 from K2, 2 from K3

• SeqB: 4 instructions from K1, 1 from K2, 1 from K3

▪Q: Which of the two code sequences, SeqA and SeqB, is faster?

▪Q: Compare the CPI of SeqA and SeqB.
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Comparing Code Segments
Solution

▪CPU clock cycles for any sequence of n instructions
• CPU clock cycles =             (CPI   × Count  )

• Count  = the number of occurrences of the corresponding instruction 

▪CPU cycles SeqA = (2 × 1) + (1 × 2) + (2 × 3) = 2+2+6 = 10 cycles

▪CPU cycles SeqB = (4 × 1) + (1 × 2) + (1 × 3) = 4+2+3 = 9 cycles

▪ Therefore, code sequence SeqB is faster; it takes one cycle less
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Comparing Code Segments
Solution, Contd.

▪CPI of a sequence is the average CPI of all of the corresponding 
instructions

▪CPI = 

▪CPI SeqA =                                      = 10 / 5  =  2.0 cycles-per-instr

▪CPI SeqB =                                      = 9 / 6  =  1.5 cycles-per-instr
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Recall: Instruction Performance
Clock Cycles Per Instruction (CPI)
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Applying Performance Equation

▪ Suppose we have two CPU implementations of the same 
instruction set architecture (ISA).

▪CPU A has a clock cycle time of 250 ps and a CPI of 2.0 for some 
program, and CPU B has a clock cycle time of 500 ps and a CPI 
of 1.2 for the same program. 

▪Q: Which CPU is faster for this program and by how much?

CS-173, © EPFL, Spring 2025
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Applying Performance Equation
Solution

▪ Each CPU executes the same number of instr. for the program, I

▪Number of CPU cycles:
• CPU clock cyclesA = IA × 2.0 = I × 2.0

• CPU clock cyclesB = IB × 1.2 = I × 1.2

▪Given the cycles, compute CPU time for both
• CPU timeA = CPU cyclesA × Clock cycleA = I × 2.0 × 250 ps = 500 × I ps

• CPU timeB = CPU cyclesB × Clock cycleB = I × 1.2 × 500 ps = 600 × I ps

▪ Finally, CPU A is 1.2× faster—takes less time—than CPU B
• CPU timeB / CPU timeA = 600 / 500 = 1.2

CS-173, © EPFL, Spring 2025
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CPU Performance Equation
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The Classic CPU Performance Equation

▪We can express CPU performance in terms of

• Instruction count (number of instructions executed by the program),

• Average clock cycles per instruction (CPI), and

• Clock cycle time
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Factors Impacting Program Performance
Algorithm

▪Q: How does an algorithm impact program performance? 

▪A: It determines the number of instructions executed. It may 
affect CPI as well, favoring slower or faster instructions.
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Factors Impacting Program Performance
ISA

▪Q: How does ISA impact program performance? 

▪A: It affects all three aspects of CPU performance: 
the instructions needed to perform the required function, 
the cost in cycles of each instruction, and the CPU clock rate.
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Performance and Power
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Performance and Power

▪ An increase in clock rate brings improvement in performance, 
but it also increases power dissipation

▪ Recall: Power dissipation in CMOS logic gates, as a function of 
switching frequency, capacitive load, and power supply

CS-173, © EPFL, Spring 2025
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Relative Dynamic Power

▪ Suppose we developed a new, simpler CPUNEW that has 85% of 
the capacitive load of the more complex older CPUOLD. 

▪ Further, assume that it can adjust the supply voltage so that it 
can reduce it by 25% compared to CPUOLD, which results in a 10% 
shrink in clock frequency. 

▪Q: What is the impact on dynamic power?
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E
X

A
M

P
L

E
S

28

Relative Dynamic Power
Solution

▪ PowerOLD = f × C × V2

▪ PowerNEW = (f × 0.9) × (C × 0.85) × (V × 0.75)2

▪ Power ratio becomes
• PowerNEW / PowerOLD = 0.9 × 0.85 × 0.752 = 0.43

▪ Therefore, the new CPU consumes less than half the power

CS-173, © EPFL, Spring 2025



CS-173, © EPFL, Spring 2025 29



© Woranuch / Adobe Stock

Single-Cycle CPU
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Outline

▪ Single-cycle CPU
• Instruction memory

• Register file

• ALU

• Load and store

• Branch support

• Completing the datapath

• Control unit

▪ Single-cycle vs. multicycle CPU
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Single-Cycle CPU

▪ In a single-cycle CPU, all operations required by an instruction
are performed within one clock cycle (CPI = 1.0)

▪ In contrast, a multi-cycle CPU has a CPI greater than 1, because 
instruction execution is broken into multiple clock cycles

▪ Let us build a simple single-cycle CPU…

CS-173, © EPFL, Spring 2025
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A Simple Single-Cycle CPU Implementation

▪ Let us build a simple CPU supporting the following subset of 
RISC-V instructions for simplicity

• R-type arithmetic-logical instructions

• add, sub, and, or

• Memory instructions

• load  and store word

• Control flow

• branch if equal

CS-173, © EPFL, Spring 2025
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What We Know
CPU + Memory
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Where We're Heading
CPU + Memory
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Single-Cycle CPU
Outline

▪ Instruction memory

▪General-purpose registers

▪ALU

▪Data memory load and store

▪ Branch support

▪Completing the datapath

▪Control signals

CS-173, © EPFL, Spring 2025



CPU's Elements For Instructions
Store and Access Instructions of the Program

▪ Instruction memory: An external 
memory unit to store the program
(i.e., the instructions) and supply 
instructions when given an address

• Much higher capacity than the register file

• For simplicity, we shall treat it as read-only

• The memory output at any time reflects
the contents at the address specified; 
no read-control signal is needed

37CS-173, © EPFL, Spring 2025
Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2nd Ed.



CPU's Elements For Instructions
Store and Access Instructions of the Program, Contd.

▪ Instruction memory: An external 
memory unit to store the program
• Byte addressable

• [32 b] Address input

• [32 b] Data (instruction) output

▪ Program counter (PC): 
a 32-bit register that holds 
the address of the current instruction

▪ An adder to increment the PC by four 
(to the address of the next instruction)

38CS-173, © EPFL, Spring 2025
Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2nd Ed.
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Single-Cycle CPU
Outline

▪ Instruction memory

▪General-purpose registers

▪ALU

▪Data memory
load and store

▪ Branch support

▪Completing the datapath

▪Control signals
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CPU's General Purpose Registers
Register File

▪ 32 general-purpose registers are 
grouped into a register file

▪ Registers are 32-bit wide

▪ Registers can be read or written by 
specifying the index (number, 
address) of the register

40CS-173, © EPFL, Spring 2025
Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2nd Ed.



CPU's General Purpose Registers
Register File, Contd.

▪ Registers hold operands for
the arithmetic and logic instructions 
and are the destination for their result

▪ Recall: R-format instructions take two 
register operands and write the result 
in the third, destination register
• Therefore, the register file must permit 

reading two registers and writing to one
in the same clock cycle

• Asynchronous read

41CS-173, © EPFL, Spring 2025
Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2nd Ed.



CPU's General Purpose Registers
Register File, Contd.

▪ Registers hold operands for
the arithmetic and logic instructions 
and are the destination for their result

▪ Recall: R-format instructions take two 
register operands and write the result 
in the third, destination register
• Therefore, the register file must permit 

reading two registers and writing to one
in the same clock cycle

• Asynchronous read
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CPU's General Purpose Registers
Register File, Contd.

▪ For each data word to be read, the register file needs
• [5 b] Read register: An input specifying

the index of the register to be read

• [32 b] Read data: An output carrying
the value that has been read

▪ To write a data word, the RF needs
• [5 b] Write register: An input specifying

the index of the register to be written to

• [32 b] Write data: Data to be written

• [1 b] RegWrite: A write control signal, 
which must be asserted for a write to occur
at the clock edge

43CS-173, © EPFL, Spring 2025
Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2nd Ed.
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Single-Cycle CPU
Outline

▪ Instruction memory

▪General-purpose
registers

▪ALU

▪Data memory
load and store

▪ Branch support

▪Completing the datapath
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CPU's Arithmetic Logic Unit
ALU

▪ Arithmetic logic unit (ALU)

▪ Takes two 32-bit inputs (operands)

▪ Produces a 32-bit result, along with 
some 1-bit signals (status "flags")
• For example, the Zero flag is asserted if 

the result of the ALU operation is zero

▪ [4 b] ALU operation: Control signals 
determine (select) the operation 
performed by the ALU

45CS-173, © EPFL, Spring 2025
Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2nd Ed.

In our simplified CPU implementation, as only 
a few operations are to be supported, four 

ALU operation bits are sufficient; for detailed 
implementation, refer to the literature
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Single-Cycle CPU
Outline

▪ Instruction memory

▪General-purpose registers

▪ALU

▪Data memory
load and store

▪ Branch support

▪Completing the datapath

▪Control signals
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CPU's Units for Data Memory Load and Store
Data Memory

▪ Data memory is the external memory of 
much higher capacity than the register file

• Recall: Register file capacity =
= 32 × 4 B = 128 B

• Recall: Memory capacity =
= 232 B = 4 GiB

▪ When needed, data from memory is 
transferred to the register file, and vice versa

▪ Reading and writing to memories is slower 
than accessing registers in the register file 
(longer wires, more capacitance, more delay…)

47CS-173, © EPFL, Spring 2025
Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2nd Ed.



CPU's Units for Data Memory Load and Store
Data Memory Interfaces

▪ Data memory interfaces
• [32 b] Address input

• [32 b] Write data input

• [32 b] Read data output

• [1 b]   MemRead: Control signal for reading

• [1 b] MemWrite: Control signal for writing

48CS-173, © EPFL, Spring 2025
Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2nd Ed.



CPU's Units for Data Memory Load and Store
Data Memory Addressing

▪ Recall the general format of the load 
and store instructions: 

• lw rd,  offset(rs1)

• sw rs2, offset(rs1)

▪ Memory address is computed by
adding the base register (rs1) with
the sign-extended 12-bit offset 
(immediate field in the instruction word)

• An immediate generation unit
performs a sign extension

49CS-173, © EPFL, Spring 2025
Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2nd Ed.
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CPU's Units for Data Memory Load and Store
Link with the Register File

▪ Load from the memory: a value must
be read from memory before it is 
transferred to a register in the register file

▪ Store to the memory: value must be
read from a register in the register file 
before it is transferred to the memory

▪ Therefore, the register file is part of
the CPU datapath for the memory access 
instructions

50CS-173, © EPFL, Spring 2025
Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2nd Ed.
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Memory Load/Store and R-type Instructions
Datapath, Annotated
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Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2nd Ed.

Taking data to
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Memory Load/Store and R-type Instructions
Datapath, Annotated
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Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2nd Ed.

Selecting between 
the data from the memory

or the ALU output

ALU operand: Selecting between
a register and a sign-extended immediate (for address comp.)
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Single-Cycle CPU
Outline

▪ Instruction memory

▪General-purpose
registers

▪ALU

▪Data memory
load and store

▪Branch support

▪Completing the datapath

▪Control signals
CS-173, © EPFL, Spring 2025
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Datapath, Contd.
Branch Instruction Support

▪ Recall: branch if equal instruction

• beq rs1, rs2, imm

• The immediate field is multiplied by 2 (i.e., shift left by 1 bit) to compute the offset

• if rs1 and rs2 are equal, PC = branch target address = PC + sign-extended offset

▪ The base register for the memory address computation is the PC

▪ One of the following two cases determines the next instruction address:
• Branch taken: when the two operand registers are equal

• PC = PC + sext(imm × 2) 

• Branch not taken:  when the two operand registers are not equal
• PC = PC + 4

CS-173, © EPFL, Spring 2025



55

Branch if Equal
Datapath, Annotated
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No gates required, handled through routing 
(bringing the right wire to right place)

Compute PC + sext(immediate) × 2
to have it ready if the branch is taken

Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2nd Ed.
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Branch if Equal
Datapath, Annotated
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Compare two 
registers for equality

Zero flag set if two registers 
at the input are equal

Indices of the registers
to be read and compared

Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2nd Ed.
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Single-Cycle CPU
Outline

▪ Instruction memory

▪General-purpose registers

▪ALU

▪Data memory load and store

▪ Branch support

▪Completing the datapath

▪Control signals
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Completing the Datapath
Memory Load/Store, R-type ALU operations, Branch If Equal

CS-173, © EPFL, Spring 2025

Select between the branch 
target address and PC + 4PC + 4

Address of
the current instruction

Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2nd Ed.

Instruction memory

Address of
the next instruction



59

Single-Cycle CPU
Outline

▪ Instruction memory

▪General-purpose
registers

▪ALU

▪Data memory

▪ Branch support

▪Completing the datapath

▪Control signals
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The End: Adding the Control Unit
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Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2nd Ed.

The control unit

ALU control logic
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The End: Adding the Control Unit
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Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2nd Ed.

Note: The control unit can set all 
but the PCSrc control signal 

based solely on the opcode and 
funct fields of the instruction.

PCSrc should be asserted if 
the instruction is beq and if

the Zero output of the ALU is 
asserted; hence the AND gate

The control unit

ALU control logic

In our simplified CPU implementation, as only 
a few operations are to be supported, four 

ALU operation bits are sufficient; for detailed 
implementation, refer to the literature
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Control Signals
Summary

Signal name Effect

RegWrite If asserted, the register on the Write reg. input is written with the value on the Write data input

ALUSrc Determines whether the second ALU operand is a register or the sign-extended immediate

PCSrc Determines if the PC is replaced by PC + 4 or by the output of 
the adder that computes the branch target

MemRead If asserted, data memory contents designated by the address input are put on
the Read data output

MemWrite If asserted, data memory contents designated by the address input are replaced by
the value on the Write data input

MemtoReg Determines if the value fed to the register Write data input comes from the ALU or
from the data memory

CS-173, © EPFL, Spring 2025
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Single-Cycle vs Multicycle
Next Lecture
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Literature
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▪ Chapter 4: The Processor
▪ 4.5
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