=8 Computer Architecture

Performance and a Single-Cycle CPU

CS-173 Fundamentals of Digital Systems

Mirjana Stojilovic

FUNDAMENTALHHO n Spring 2025

D IGITAL

SYSTEMS

https://mirjanastojilovic.github.io/cs173/index.html

Previously on FDS

« Assembler directives

« 1i and la pseudoinstructions
© Anastasil/ / Adobe Stock

e Do-while and if-then-else

CS-173, © EPFL, Spring 2025

Let's Talk About

« CPU Performance

* Processor Implementations
 Single-cycle CPU

R W
© Woranuch / Adobe Stock

CS-173, © EPFL, Spring 2025 3

Learning Outcomes

= Reason about CPU performance and the factors affecting it

= Discover single-cycle CPU implementation
» Pros and cons of single-cycle and multicycle implementations

= Draw a CPU block diagram
» Datapath + control

= |List and explain instruction execution steps
* The hardware components and control signals involved

Quick Outline

= CPU performance

= CPU time: Example

= [nstruction performance: Example

= CPI: Example

= Classic CPU performance equation

= Performance and power: Example
= Single-cycle CPU

© Woranuch / Adobe Stock

CS-173, © EPFL, Spring 2025 5

CPU Performance

© Woranuch / Adobe Stock

CS-173, © EPFL, Spring 2025 6

Time

= Time is the measure of computer performance

« A computer that performs the same work in the least amount of time
s the fastest and thus, most performant

= CPU execution time is measured in seconds per program
* Program-specific

= Definition of time

« Wall clock time < response time < elapsed time
* Includes overheads (for tasks other than running our program)

CS-173, © EPFL, Spring 2025

CPU Performance

= CPU execution time or, simply, CPU time
* The time the CPU spends on our program

* |gnores overheads, such as the time to read/write to input/output
devices (e.qg., keyboard, screen, printer), and performing unrelated
system tasks

= We measure time in discrete time intervals: clock cycles
« Synonyms: CPU cycles, ticks, clock ticks, clock periods, clocks, cycles

CS-173, © EPFL, Spring 2025

CPU Performance and Its Factors

s A formula that relates basic metrics to CPU execution time

CPU time
for a program =
(in seconds)

CPU cycles Clock cycle
X :
for a program (in seconds)

= Alternatively, as clock rate (i.e., frequency) and cycle are inverses

CPU time CPU cycles for a program
for a program ,
(in seconds) Clock rate (in Hz)

CS-173, © EPFL, Spring 2025

(7]
i
—
o
=
<
x
1]

CPU Time

Q: Consider CPU A, running on a 2 GHz clock. The CPU time to run our program
Is 10 s. How many CPU cycles does this CPU take to run the program?

A: Recall: CPU cycles,
CPU time, = .
Clock rate, (in Hz)
Therefore, CPU cycles,
10s = 2 % 109 cycles
8 second

Finally, CPU A takes 20 x10° cycles to run our program.

CS-173, © EPFL, Spring 2025

10

Improving Performance

= | et us help a designer build CPU B, which will run the same program in 6 s.

= The computer designer realized that a substantial increase in clock rate is
possible. Still, this increase will affect the rest of the CPU, causing CPU B to
require 1.2 x the cycles that CPU A takes to run this program.

= Q: What clock rate should the designer of CPU B target?
" A

1.2 x CPU cycles, 1.2 x 20 x 10°
CPU timeg = = = 65
Clock rateg Clock rateg

Therefore, the clock rate of CPU B is 4 GHz (double the clock rate of CPU A).

CS-173, © EPFL, Spring 2025

11

CS-173, © EPFL, Spring 2025

12

Instruction Performance

Clock Cycles Per Instruction (CPI)

= So far, we have not included any reference to the number of
instructions needed for the program. However, CPU time
depends on the number of instructions in a program

Instructions " Average clock cycles

CPU cycles = f :)
or a program per instruction

= Average clock cycles per instruction (CPI) is the average of
all the instructions executed by the program
* Depending on what they do, instructions may take different times

CS-173, © EPFL, Spring 2025

13

(7]
w
—
o
=
<
>
]

Comparing Code Segments

= Consider three instruction classes, K, K,, and K;, with CPIs of 1,
2, and 3 cycles per instruction, respectively.

= For a particular high-level code segment, the compiler writer is
considering two code sequences requiring the following
Instruction counts:
« Seq,: 2 instructions from K, 1 from K,, 2 from K,
* Seqg: 4 instructions from K, 1T from K,, T from K,

= Q: Which of the two code sequences, Seq, and Seqg, is faster?
= Q: Compare the CPI of Seq, and Seq.

CS-173, © EPFL, Spring 2025

14

(7]
w
—
o
=
<
>
]

Comparing Code Segments

Solution

= CPU clock cycles for any sequence of n instructions
» CPU clock cycles = 371, (CPI. x Count,)
- Count; = the number of occurrences of the corresponding instruction

=CPUcyclesSeq,=(2x 1)+ (1 x2) + (2 x 3) =2+2+6 = 10 cycles
= CPU cycles Seqp=(4x 1)+ (1 x2)+(1x3)=4+2+3 =9 cycles

= Therefore, code sequence Seqy is faster; it takes one cycle less

CS-173, © EPFL, Spring 2025

15

(7]
w
—
o
=
<
>
]

Comparing Code Segments

Solution, Contd.

= CPI of a sequence is the average CPI of all of the corresponding

instructiong |
PU cvcles
« CP| = 4

Instruction count

CPU cycles Seq, ,
» CPlI Seq, = . =10/ 5 = 2.0 cycles-per-instr
Instruction count Seq,

CPU cycles Seqg ,
» CPI Seqg = =9 /6 = 1.5cycles-per-instr

Instruction count Seqg

CS-173, © EPFL, Spring 2025

16

Recall: Instruction Performance

Clock Cycles Per Instruction (CPI)

Instructions " Average clock cycles

CPU cycles = : :
for a program per instruction

CS-173, © EPFL, Spring 2025

17

Applying Performance Equation

= Suppose we have two CPU implementations of the same
instruction set architecture (ISA).

= CPU A has a clock cycle time of 250 ps and a CPI of 2.0 for some

program, and CPU B has a clock cycle time of 500 ps and a CP|
of 1.2 for the same program.

= Q: Which CPU is faster for this program and by how much?

Note: 1 ps = 1 picosecond = 107% s

CS-173, © EPFL, Spring 2025 18

Applying Performance Equation

Solution

= Fach CPU executes the same number of instr. for the program, |

= Number of CPU cycles:
« CPU clock cycles, =1, x2.0=1x2.0
« CPU clockcyclesg=1gx1.2=1x1.2

= Given the cycles, compute CPU time for both
« CPU time, = CPU cycles, x Clock cycle, =1x 2.0 x 250 ps = 500 x [ps
« CPU timeg = CPU cyclesg x Clock cycleg = 1x 1.2 x 500 ps = 600 x | ps

= Finally, CPU A is 1.2x faster—takes less time—than CPU B
» CPU timeg, / CPU time, = 600/ 500 = 1.2

CS-173, © EPFL, Spring 2025 19

CS-173, © EPFL, Spring 2025

.')

y

"‘f\’

0,

vl

4
.

© Woranuch / Adobe Stock

20

»

The Classic CPU Performance Equation

= \We can express CPU performance in terms of
* Instruction count (number of instructions executed by the program),
 Average clock cycles per instruction (CPI), and

 Clock cycle time

CPU time Instruction count " Clock cycle

fz;igég%i'}n ~ foraprogram o (in seconds)

Algorithm
c CPUtime _ Instructioncount CPl Clock cycle
or a program for a program (in seconds)

(in seconds)

= Q: How does an algorithm impact program performance?

= A: It determines the number of instructions executed. It may
affect CPIl as well, favoring slower or faster instructions.

CS-173, © EPFL, Spring 2025

Factors Impacting Program Performance

22

ISA
c CPU time _ Instructioncount CPl Clock cycle
or a program for a program (in seconds)

(in seconds)

= Q: How does ISA impact program performance?

= A: It affects all three aspects of CPU performance:
the instructions needed to perform the required function,
the cost in cycles of each instruction, and the CPU clock rate.

CS-173, © EPFL, Spring 2025

Factors Impacting Program Performance

23

CS-173, © EPFL, Spring 2025

24

Performance and Power

© Woranuch / Adobe Stock

CS-173, © EPFL, Spring 2025 25

Performance and Power

= Anincrease in clock rate brings improvement in performance,
but it also increases power dissipation

= Recall: Power dissipation in CMOS logic gates, as a function of
switching frequency, capacitive load, and power supply

Pp = fCV?

(7]
i
—
o
=
<
x
1]

Relative Dynamic Power

= Suppose we developed a new, simpler CPUyg, that has 85% of
the capacitive load of the more complex older CPUg, p.

= Further, assume that it can adjust the supply voltage so that it
can reduce it by 25% compared to CPU,, 5, which results in a 10%
shrink in clock frequency.

= Q: What is the impact on dynamic power?

CS-173, © EPFL, Spring 2025

27

(7]
i
—
o
=
<
x
1]

Relative Dynamic Power

Solution
Pp = fCV?

= Powerqg p =fx Cx V?
= Powerygy = (Fx 0.9) x (C x 0.85) x (V x 0.75)2

= Power ratio becomes
« Powerygy / Powerg p =09 x0.85x0.75%2 =0.43

= Therefore, the new CPU consumes less than half the power

CS-173, © EPFL, Spring 2025

28

CS-173, © EPFL, Spring 2025

29

Single-Cycle CPU

© Woranuch / Adobe Stock

CS-173, © EPFL, Spring 2025 30

Outline

= Single-cycle CPU

Instruction memory

Register file

ALU

Load and store

Branch support
Completing the datapath
Control unit

= Single-cycle vs. multicycle CPU

CS-173, © EPFL, Spring 2025

© Woranuch / Adobe Stock

31

Single-Cycle CPU

= [n a single-cycle CPU, all operations required by an instruction
are performed within one clock cycle (CPI = 1.0)

= |n contrast, a multi-cycle CPU has a CPI greater than 1, because
instruction execution is broken into multiple clock cycles

= _et us build a simple single-cycle CPU...

A Simple Single-Cycle CPU Implementation

= |_et us build a simple CPU supporting the following subset of
RISC-V instructions for simplicity

* R-type arithmetic-logical instructions
* add, sub, and, or

 Memory instructions
* |oad and store word

e Control flow

* branch if equal

What We Know

CPU + Memory

.

L

A
Register
MemDataOut W o Re > ALU
> MUX
B Op
SEL
Data Memory W AR A /
I :
MembDataln SRR R CPU
Address Wr
Control Logic (Read, Decode, Update PC)
""" SEL Program MemDataOut
Y MUX Counter (PC) Q Address
7 Instruction
Memory

Where We're Heading

CPU + Memory

CS-173, © EPFL, Spring 2025

PC

Branch

| MemRead

MemtoReg

»|Control ALUOD

Mem\Write

| ALUSrc

RegWrite

Add
4 —
Instruction [6-0]
Instruction [19-15]
Read 4
address Instruction [24-20]
Instruction
[31-0] Instruction [11-7]
Instruction
memory

Instruction [31-0]

Read
register 1 Raad

Read data 1

register 2

write ~ Read
register data 2

Write
data Registers

»(0

- xc=

A 4

Zero
ALU Al Uy
result

Instruction [30,14-12]

Read

Address data

Write
data

Data
memory

—

Oxe=—

35

Single-Cycle CPU

Outline
[
Add >
° 4 —»
* [nstruction memory
? Branch
| MemRead
Instruction [6-0] MemtoReg
» Control ALUObD
MemWrite
| ALUSrc
RegWrite
Instruction [19-15] Read
| PC o> Rsc?d * . register 1 Read ~
adaress Instruction [24-20] .| Read data 1 >
Instruction register 2
[31-0] Instruction [11-7] Write Read (0
Instruction - register data 2 M
memory u
| Write 1" -~
data Registers
Instruction [31-0] N ALU
contre
CS-173, © EPFL, Spring 2025 Instruction [30,14-12]

CPU's Elements For Instructions

Store and Access Instructions of the Program

= |[nstruction memory: An external
memory unit to store the program

(i.e., the instructions) and supply
instructions when given an address > s

Y

» Much higher capacity than the register file 4 —
 For simplicity, we shall treat it as read-only oc |1 | Read
« The memory output at any time reflects address
the contents at the address specified; Instruction —»
no read-control signal is needed
Instruction
memory

CS-173, © EPFL, Spring 2025 37
Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2" Ed.

CPU's Elements For Instructions

Store and Access Instructions of the Program, Contd.

= |nstruction memory: An external
memory unit to store the program
» Byte addressable
* [32 b] Address input > Add
« [32 b] Data (instruction) output

\

4 ——
= Program counter (PC): . ~ond
a 32-bit register that holds address
the address of the current instruction Instruction ——
= An adder to increment the PC by four et ucson

(to the address of the next instruction)

CS-173, © EPFL, Spring 2025 38
Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2" Ed.

Single-Cycle CPU

Outline

Add

= General-purpose registers "

Read
address

Instruction
[31-0]

Instruction
memory

CS-173, © EPFL, Spring 2025

Instruction [6-0]

[

»|Control

Instruction [19-15]

Branch

4

| MemRead

MemtoReg

ALUOp

MemWrite

. Read

Instruction [24-20]

register 1 paog

Instruction [11-7]

register 2

Write Read

> register data2

Write

Y

Instruction [31-0]

data Registers

»| Read data 1

A J

Instruction [30,14-12]

ALU
contr

CPU's General Purpose Registers

Register File

= 32 general-purpose registers are
grouped into a register file

» Registers are 32-bit wide

= Registers can be read or written by
specifying the index (number,
address) of the register

Registers

Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2" Ed.

CPU's General Purpose Registers

Register File, Contd.

= Registers hold operands for
the arithmetic and logic instructions
and are the destination for their result

= Recall: R-format instructions take two
register operands and write the result
In the third, destination register

« Therefore, the register file must permit
reading two registers and writing to one
in the same clock cycle

« Asynchronous read

Registers

Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2" Ed.

CPU's General Purpose Registers

Register File, Contd.

= Registers hold operands for
the arithmetic and logic instructions

and are the destination for their result .
.) Avhi?g?;eﬂ Read)
= Recall: R-format instructions take two regser | 5 | Read| |
. . ed
register operands and write the result numbers | <" register2 \ bate
in the third, destination register 3, wie Fegisters
\ i’EgIStEI’ Read
» Therefore, the register file must permit i { | write data2["
reading two registers and writing to one Data _
in the same clock cycle regiiite
« Asynchronous read
CS-173, © EPFL, Spring 2025 42

Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2" Ed.

CPU's General Purpose Registers

Register File, Contd.

= For each data word to be read, the register file needs

» [5 b] Read register: An input specifying
the index of the register to be read

» [32 b] Read data: An output carrying
the value that has been read

= To write a data word, the RF needs

« [5 b] Write register: An input specifying
the index of the register to be written to
* [32 b] Write data: Data to be written

A write control signal,
which must be asserted for a write to occur
at the clock edge

-

2 | Read
register 1 Read
Register 5 Read data 1
numbers * | register 2
5 . Registers
: :nitseter
\ g Read
: data 2
Data { Write
Data
RegWrite

Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2" Ed.

> Data

Single-Cycle CPU

Outline

= ALU

CS-173, © EPFL, Spring 2025

Add

PC

Read
address

Instruction
[31-0]

Instruction
memory

Instruction [6-0]

Instruction [19-15]
o

Branch

\ MemRead

MemtoReg

»|Control ALUOp

MemWrite

| ALUSrc

RegWrite

Instruction [24-20]

Instruction [11-7]

Instruction [31-0]

L]

Read
register 1 paooq

Read data 1

register 2

Write Read
register data 2

Write
data Registers

ALU 5| 1
result

/

Instruction [30,14-12]

Read

Address data ™™

Write
data

Data
memory

pavis

CPU's Arithmetic Logic Unit
ALU

In our simplified CPU implementation, as only

= Arlth metiC |Og iC un |t (ALU) a few operations are to be supported, four

ALU operation bits are sufficient; for detailed
implementation, refer to the literature

= Takes two 32-bit inputs (operands)

= Produces a 32-bit result, along with
some 1-bit signals (status "flags")

« For example, the Zero flag is asserted if
the result of the ALU operation is zero

ALU operation

Control signals
determine (select) the operation
performed by the ALU

Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2" Ed.

Single-Cycle CP

Outline

» Data memory
load and store

CS-173, © EPFL, Spring 2025

U

Add

Read
address

Instruction
[31-0]

Instruction
memory

Instruction [6-0]

Instruction [19-15]
o

Branch

\ MemRead

MemtoReg

»|Control ALUOp

MemWrite

| ALUSrc

RegWrite

Instruction [24-20]

Instruction [11-7]

Instruction [31-0]

Y

Read
register 1 paooq

Read data 1

register 2

Write Read
register data 2

Write
data Registers

A 4

;KO

—“xc=2

Instruction [30,14-12]

ALU
control

Read

Address data

Write Data
data Memory

Oxec=2—

40

CPU's Units for Data Memory Load and Store

Data Memory

= Data memory is the external memory of
much higher capacity than the register file

» Recall: Reqister file capacity =
= 32 X 4 B = 128 B —| Address Rdeaat: S
* Recall: Memory capacity =
=232 B =4GiB | Data
__|Wwiite memony
= \When needed, data from memory is data
transferred to the register file, and vice versa P

= Reading and writing to memories is slower

than accessing registers in the register file
(longer wires, more capacitance, more delay...)

Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2" Ed.

CPU's Units for Data Memory Load and Store

Data Memory Interfaces

= Data memory interfaces MemWrite
* [32 b] Address input read
- - . . —| Address —
* |32 b] Write data input data
 [32 b] Read data output Data
Control signal for reading Write Mmemory
Control signal for writing data
MemRead
CS-17/3, © EPFL, Spring 2025 48

Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2" Ed.

CPU's Units for Data Memory Load and Store

Data Memory Addressing

= Recall the general format of the load
and store instructions:

e lw rd, offset(rsl)
* sw rs2, offset(rsl)

= Memory address is computed by
adding the base register (rs1) with
the sign-extended 12-bit offset
(immediate field in the instruction word)

« An immediate generation unit
performs a sign extension

12 32

Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2" Ed.

CPU's Units for Data Memory Load and Store

Link with the Register File

= Load from the memory: a value must
be read from memory before it is .

. . . . S | Read
transferred to a register in the register file =" register 1 Read '-
Reaqist 5 data 1
= Store to the memory: value must be numbers) " reareter 2
read from a register in the register file L5 |wie Registers ; Data
before it is transferred to the memory S o Read|
Write J
. . . Data —
= Therefore, the register file is part of { Data
RegWrite

the CPU datapath for the memory access
Instructions

CS-173, © EPFL, Spring 2025 50
Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2" Ed.

Memory Load/Store and R-type Instructions

Datapath, Annotated
?
> RE;TIE:: 1 ALU operation
register
g dRE 3? - MemWrite
Read ata Zer
Instruction | register 2 ALU ero ?
. Registers 4 ALU Read
—| VVrite data2 result Address data
register ? 7
- VWrite - T
data Wit Data
A Write =~ WIMe memo
RegWrite data v
= Taking data to
N l(g"lerrr]l nEEE the register file, for writing
sign-extended immediate; 51

CS-173, © EPFL, Spring 2025 .) . .
sign-bit wire replicated Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2M Ed.

Memory Load/Store and R-type Instructions

ALU operand: Selecting between

a register and a sign-extended immediate (for address comp.)

Zero

ALU
result

ALU

ALU operation

Datapath, Annotated
| Read
register 1 Read =
Read data 1
Instruction | register 2 ALUSrc ‘
Registers . 4
. Write —o—(0
register data 2 'ﬂl
| Write .l g
data
RegWrite
N, Imm
> Gen

MemWrite
Address Rc?aatg >
, Data
~ Wiitt memory
data
MemHKead

MemtoReg

1
M
u
X

0

CS-173, © EPFL, Spring 2025

Selecting between
the data from the memory
or the ALU output

52

Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2" Ed.

Single-Cycle CPU

Outline

:

Add

4 — Add Sum

Branch
\ MemRead

Instruction [6-0] MemtoReg

» Control ALUOp
MemWrite
| ALUSrc
RegWrite

Oxe=—

Instruction [19-15] Read
> PC &> 5(?;%55 ! ™| register 1 Read
Instruction [24-20] | Read data 1 g
Instruction register 2 ALU
BT T instruction [11-7] | write Read ~(0 rgﬁ Addressteaa,‘[g
Instruction ™| register data2 M
memory x
_| write X L
| data Registers Write Data
= Branch support i
Instruction [31-0] Imm | ALU
Gen control

Instruction [30,14-12]

CS-173, © EPFL, Spring 2025

Datapath, Contd.

Branch Instruction Support

= Recall: branch if equal instruction
* begq rsl, rs2, imm
« The immediate field is multiplied by 2 (i.e., shift left by 1 bit) to compute the offset
* if rs1and rs2 are equal, PC = branch target address = PC + sign-extended offset

= The base register for the memory address computation is the PC

= One of the following two cases determines the next instruction address:

« Branch taken: when the two operand registers are equal
« PC =PC + sext(imm x 2)

* Branch not taken: when the two operand registers are not equal
« PC=PC+4

CS-173, © EPFL, Spring 2025

54

Branch if Equal

Datapath, Annotated | .
path, Compute PC + sext(immediate) x 2
to have it ready if the branch is taken
' ' PC from instruction datapath —
No gates required, handled through routing
(bringing the right wire to right place) > Add Sum Eﬂg’;‘:h
. Read
Instruction register 1 Read
Read data 1
register 2
Write Registers
register Read
Write cama 2
data
RegWrite
« | Imm
~ | Gen
CS-173, © EPFL, Spring 2025 55

Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2" Ed.

Branch if Equal

Datapath, Annotated
PC from instruction datapath —
sum Branch
Add target
Road Compare two
. ALU operation - .
: registers for equalit
Instruction register 1 Read , . 9 quality
Read data 1]
register 2
_ ALU Zero To branch_
Write Registers control logic
Indices of the registers register Read
to be read and compared data 2 g . .
Write Zero flag set if two registers
data at the input are equal
RegWrite
| mm
» Gen
CS-173, © EPFL, Spring 2025 56

Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2" Ed.

Single-Cycle CPU

Outline

= Completing the datapath

Completing the Datapath

Memory Load/Store, R-type ALU operations, Branch If Equal

PC +4

Address of
the current instruction

Address of
the next instruction

PC

Instruction memory

CS-173, © EPFL, Spring 2025

PCSrc
M
HAdd > \ u
X
4 —» >Aﬂd Sum -
Read A o Al o P A
Road 1 AlLUSre 4+ ALU operation
address register 1 Read - . Mem\Write
Read data 1 r
: . register 2 o
nstruction write RETISEETS Re g >ALU ALU Address Read
) rite data 2 result data
Instruction register
memory
Write -~
data N Write Data
RegWrite | " | data memory
MemRead
v, Imm
N Gen

MemtoReg

Select between the branch
target address and PC + 4

58

Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2" Ed.

Single-Cycle CP

Outline

= Control signals

CS-173, © EPFL, Spring 2025

U

Add
4 —
Instruction [6-0]
Instruction [19-15]
5(?(?!%55 ? . ll?éeg?sdtef 1 Read
Instruction [24-20 >
[] +| Read data 1
Instruction register 2
[31-01 [T nstruction [11-7] Write Read (0 AddressteaE}[‘Eﬂj 1
Instruction ™ register data2 M M
memory u g
| Write 1" 0
| data i
Registers Write Data
data memory,
Instruction [31-0] . ALU
control
Instruction [30,14-12]
oY

The End: Adding the Control Unit

PC

The control unit

CS-173, © EPFL, Spr

2

o Control

>h.dl:l Sum

- =xc= ©

S

viET -4|-:.|
ALUOpD

e
ALUSrC

B o VAL s
B NN

Read

register 1 gagg
Reaq datal

register 2
Write Read

register data 2

Write

| data Registers

—‘x:ga

\.

Read
Address data

D=

: Data
Ei'ge memory|

ALU

»

Read
™ EE?I{?I'ESS

Instruction |4

[31-0]
Instruction
memory

ALU control logic

control

J |

60

Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2" Ed.

The End: Adding the Control Unit

2

Read
address

[31-0]

Instruction
memory

The control unit

©s173,© EPFL, spr - ALU control logic

o Control

Note: The control unit can set all
but the control signal
based solely on the opcode and
funct fields of the instruction.

should be asserted if
the instruction is beq and if

Instruction |

Read
register 1 gagg

Read data 1
register 2

Write Read

register data 2

Write

| data Registers

—‘xl:g&"\‘

the Zero output of the ALU is
asserted, hence the AND gate

Y

ALU

control

J]

Read
Address data

D=

Write Data In our simplified CPU implementation, as only
memory :
data a few operations are to be supported, four

I | ALU operation bits are sufficient; for detailed

| implementation, refer to the literature

61

Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2" Ed.

Control Signals

Summary

Signal name Effect
If asserted, the register on the Write reg. input is written with the value on the Write data input

Determines whether the second ALU operand is a register or the sign-extended immediate

Determines if the PC is replaced by PC + 4 or by the output of
the adder that computes the branch target

If asserted, data memory contents designated by the address input are put on
the Read data output

If asserted, data memory contents designated by the address input are replaced by
the value on the Write data input

Determines if the value fed to the register Write data input comes from the ALU or
from the data memory

CS-173, © EPFL, Spring 2025

63

=

Single-Cycle vs Multicycle '-

Next Lecture

© Woranuch / Adobe Stock

CS-173, © EPFL, Spring 2025 64

Literature

CONPUTER ORGANIZATION The RISC-V Instruction Set

AND DESIGN Risc-v Epmon
_ THEHARDWARESOTWAREINTERFCE M a n u a | \/Ol u m e |

Unprivileged Architecture

Version 20240411

Visit online: Link

= Chapter 4: The Processor
= 45

CS-173, © EPFL, Spring 2025

https://drive.google.com/file/d/1uviu1nH-tScFfgrovvFCrj7Omv8tFtkp/view
https://drive.google.com/file/d/1uviu1nH-tScFfgrovvFCrj7Omv8tFtkp/view

